Multi-Behavior Hypergraph-Enhanced Transformer for Sequential Recommendation

Yuhao Yang University of Hong Kong Hong Kong, China yuhao-yang@outlook.com

Yuxuan Liang
National University of Singapore
Singapore, Singapore
yuxliang@outlook.com

Chao Huang*
University of Hong Kong
Hong Kong, China
chaohuang75@gmail.com

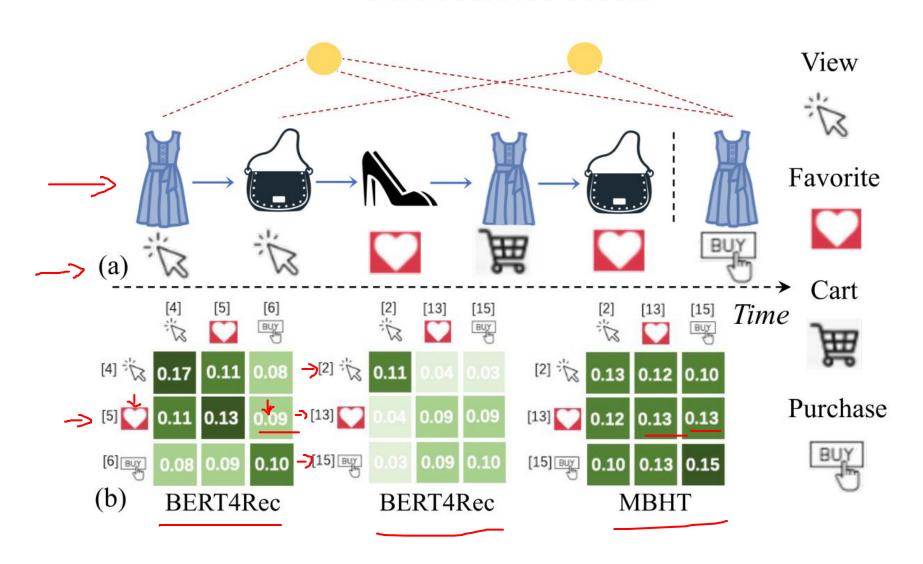
Yanwei Yu Ocean University of China Qingdao, China yuyanwei@ouc.edu.cn

KDD 2022

2022. 7. 24 • ChongQing

Lianghao Xia University of Hong Kong Hong Kong, China aka xia@foxmail.com

> Chenliang Li Wuhan University Wuhan, China cllee@whu.edu.cn



Introduction

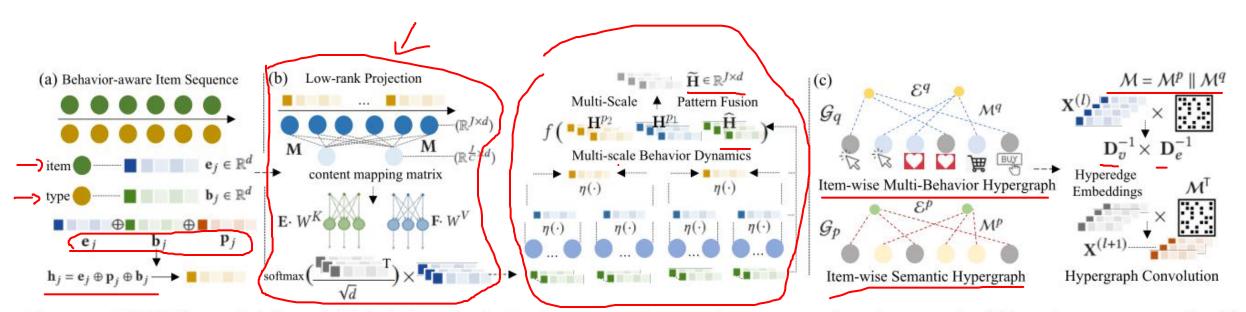
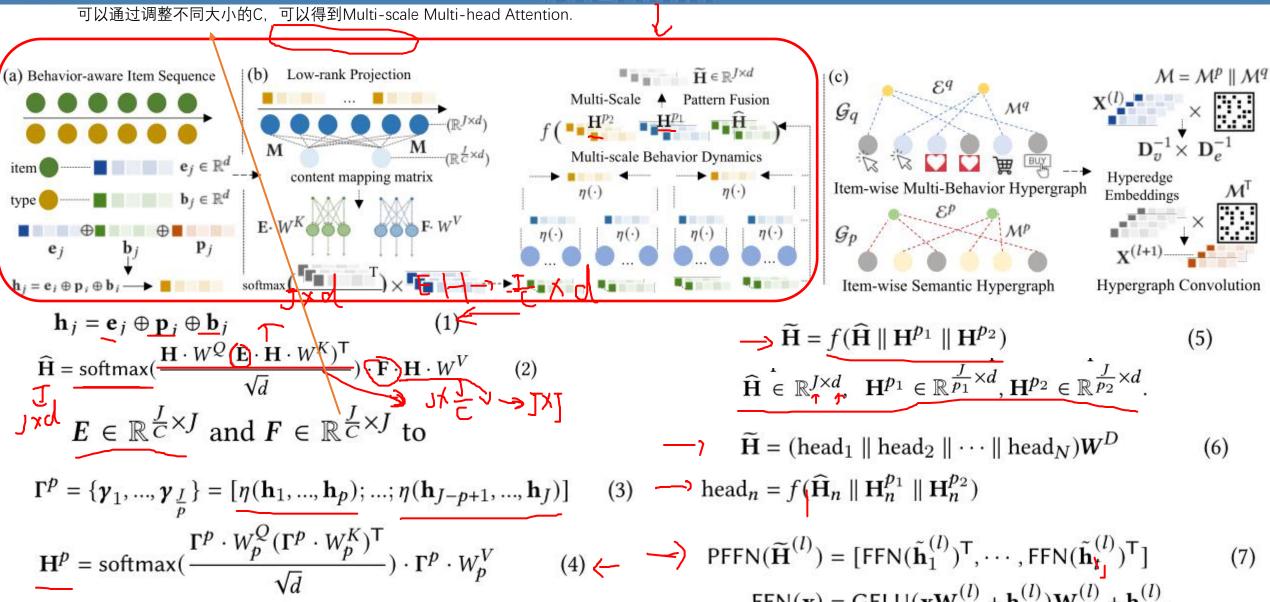
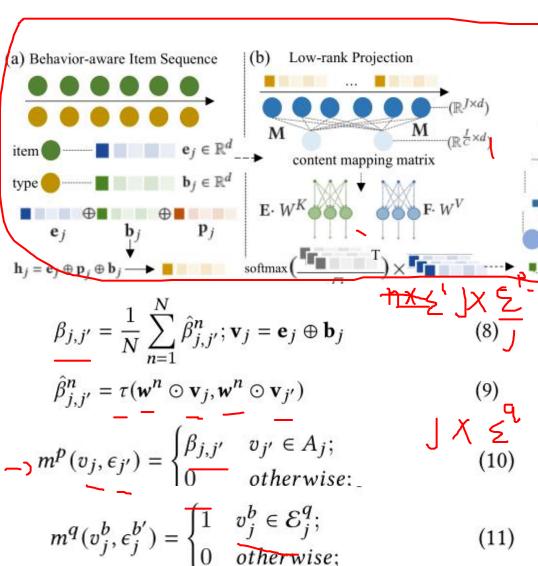




Figure 2: MBHT's model flow. (a) We inject the behavior-aware interaction context into item embeddings $\mathbf{h}_j = \mathbf{e}_j \oplus \mathbf{p}_j \oplus \mathbf{b}_j$. (b) Multi-scale transformer architecture to capture behavior-aware transitional patterns via low-rank self-attention and multi-scale sequence aggregation. Scale-specific behavior patterns are fused through the fusion function $\widetilde{\mathbf{H}} = f(\widehat{\mathbf{H}} \parallel \mathbf{H}^{p_1} \parallel \mathbf{H}^{p_2})$. (c) We capture the global and personalized multi-behavior dependency learning with our hypergraph neural architecture over \mathcal{G} .

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. 2020. Linformer: $Self^{-2} + \mathbf{b}_2^{(l)}$, Attention with Linear Complexity. arXiv:2006.04768 [cs.LG]

 A_i represents the set of top-k semantic correlated items of a specific item v_i . We define the connection matrix between items and hyperedges as $\mathcal{M}^p \in \mathbb{R}^{J \times |\mathcal{E}^p|}$ in which each entry $m^p(v_i, \epsilon_{i'})$ is:

 $\widetilde{\mathbf{H}} \in \mathbb{R}^{J \times d}$ Pattern Fusion Multi-scale Behavior Dynamics Hyperedge Embeddings Hypergraph Convolution Item-wise Semantic Hypergraph i.e., $\mathcal{M} = \mathcal{M}^p \parallel \mathcal{M}^q$. $\mathcal{M} \in \mathbb{R}^{J \times (|\mathcal{E}^p| + |\mathcal{E}^q|)}, \mathcal{M}^q \in \mathbb{R}^{\hat{J} \times |\mathcal{E}^q|}$ $\mathcal{M}^p \in \mathbb{R}^{J \times |\mathcal{E}^p|}$ $\mathbf{X}^{(l+1)} = \mathbf{D}_{v}^{-1} \cdot \mathbf{\mathcal{M}} \cdot \mathbf{D}_{e}^{-1} \cdot \mathbf{\mathcal{M}}^{\mathsf{T}} \cdot \mathbf{X}^{(l)}$ (12) $\mathbf{x}^{(0)} = (\mathbf{v}_j \oplus \mathbf{b}_j) \odot \operatorname{sigmoid}((\mathbf{v}_j \oplus \mathbf{b}_j) \cdot \mathbf{w} + \mathbf{r}).$ $\alpha_i = \text{Attn}(\boldsymbol{e}_i) = \frac{\exp(\boldsymbol{a}^\mathsf{T} \cdot \boldsymbol{W}_a \boldsymbol{e}_i)}{\sum_i \exp(\boldsymbol{a}^\mathsf{T} \cdot \boldsymbol{W}_a \boldsymbol{e}_i)}$ (13) $e_i \in \{\mathbf{h}_i, \tilde{\mathbf{x}}_i\}; \ \mathbf{g}_i = \alpha_1 \cdot \mathbf{h}_i \oplus \alpha_2 \cdot \tilde{\mathbf{x}}_i$ $\tilde{\mathbf{x}}_i$ is the average of $\mathbf{x}^{(l)}$ across all convolutional layers. (14)

Table 1: Statistical information of experimented datasets.

Stats.	— Taobao	Retailrocket	IJCAI		
# Users	147, 892	11, 649	200, 000		
# Items	99, 038	36, 223	808, 354		
# Interactions	7, 092, 362	87, 822	13, 072, 940		
# Average Length	48.23	14.55	78.58		
# Density	5×10^{-6}	1×10^{-6}	7×10^{-7}		
# Behavior Types	[buy, cart, fav, pv]	[buy, cart, pv]	[buy, cart, fav, pv]		

Table 2: The performance of our method and the best performed baseline are presented with bold and underlined, respectively. Superscript * indicates the significant improvement between our MBHT and the best performed baseline with p value < 0.01.

Model HF		Taobao				Retailrocket				IJCAI					
	HR@5	NDCG@5	HR@10	NDCG@10	MRR	HR@5	NDCG@5	HR@10	NDCG@10	MRR	HR@5	NDCG@5	HR@10	NDCG@10	MRR
General Sequent	ial Recom	mendation M	ethods												
Caser	0.082	0.058	0.123	0.071	0.070	0.632	0.539	0.754	0.578	0.535	0.134	0.092	0.167	0.104	0.109
HPMN	0.162	0.130	0.219	0.141	0.139	0.664	0.633	0.711	0.587	0.602	0.144	0.085	0.197	0.124	0.123
GRU4Rec	0.147	0.105	0.209	0.125	0.118	0.640	0.575	0.708	0.597	0.572	0.141	0.100	0.200	0.119	0.113
SASRec	0.150	0.110	0.206	0.128	0.123	0.669	0.644	0.689	0.650	0.645	0.146	0.110	0.191	0.124	0.122
BERT4Rec	0.198	0.153	0.254	0.171	0.163	0.808	0.670	0.881	0.694	0.639	0.297	0.220	0.402	0.253	0.227
Graph-based Sec	uential R	ecommender .	Systems												
SR-GNN	0.102	0.071	0.153	0.087	0.086	0.848	0.780	0.891	0.793	0.767	0.072	0.048	0.118	0.062	0.064
GCSAN	0.217	0.160	0.305	0.188	0.173	0.872	0.846	0.890	0.851	0.842	0.119	0.086	0.175	0.104	0.101
HyperRec	0.145	0.130	0.224	0.133	0.129	0.860	0.705	0.833	0.820	0.816	0.140	0.109	0.236	0.144	0.132
SURGE	0.122	0.078	0.193	0.100	0.093	0.906	0.879	0.878	0.887	0.870	0.226	0.159	0.322	0.190	0.171
Multi-Behavior I	Recommen	idation Mode	ls												
BERT4Rec-MB	0.211	0.169	0.263	0.186	0.178	0.875	0.858	0.889	0.863	0.857	0.257	0.189	0.342	0.216	0.197
MB-GCN	0.185	0.103	0.309	0.143	0.149	0.878	0.735	0.844	0.752	0.739	0.218	0.145	0.335	0.182	0.177
NMTR	0.125	0.082	0.174	0.097	0.103	0.858	0.697	0.827	0.724	0.741	0.109	0.076	0.184	0.099	0.106
MB-GMN_	0.196	0.115	0.319	0.154	0.151	0.901	0.762	0.853	0.830	0.822	0.235	0.161	0.337	0.193	0.176
MBHT	0.323*	0.257*	0.405*	0.283*	0.262*	0.956*	0.950*	0.931*	0.933*	0.929*	0.346*	0.268*	0.437*	0.297*	0.272*
# Improve	48.84%	52.07%	26.95%	50.53%	47.19%	5.17%	8.07%	6.36%	5.19%	6.78%	16.50%	21.82%	8.71%	17.39%	19.82%

Experiment

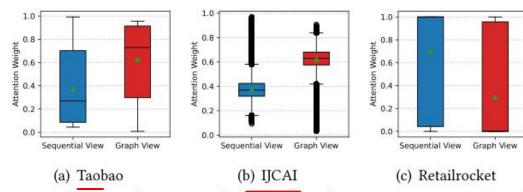


Figure 3: Distributions of the learned attentive view-specific contributions. Green triangles and black line in the showed boxes denote the mean and median values, respectively.

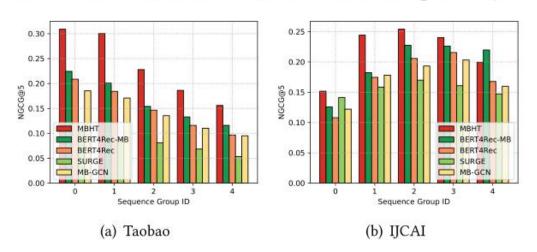


Figure 4: Performance w.r.t different sequence lengths.

Table 3: Ablation study with key modules.

Model Variants	Ta	aobao	Reta	ilrocket	IJCAI		
Model variants	HR@5	NDCG@5	HR@5	NDCG@5	HR@5	NDCG@5	
MBHT	0.323	0.257	0.956	0.950	0.346	0.268	
(-) MB-Hyper	0.261	0.206	0.883	0.861	0.320	0.249	
(-) ML-Hyper	0.271	0.212	0.898	0.874	0.328	0.256	
(-) Hypergraph	0.246	0.194	0.813	0.839	0.301	0.234	
(-) MS-Attention	0.253	0.200	0.816	0.832	0.329	0.256	

- (-) MB-Hyper. This variant does not include the hypergraph of item-wise multi-behavior dependency to capture the long-range cross-type behavior correlations.
- (-) ML-Hyper. In this variant, we remove the hypergraph message passing over the hyperedges of item semantic dependence (encoded with the metric learning component).
- (-) Hypergraph. This variant disables the entire hypergraph itemwise dependency learning, and only relies on the multi-scale Transformer to model the sequential behavior patterns.
- (-) MS-Attention. For this variant, we replace our multi-scale attention layer with the original multi-head attentional operation.

Experiment

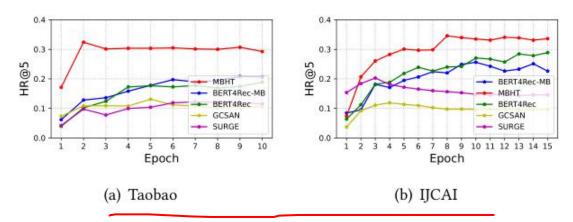


Figure 5: Training curves evaluated by testing Hit Rate.

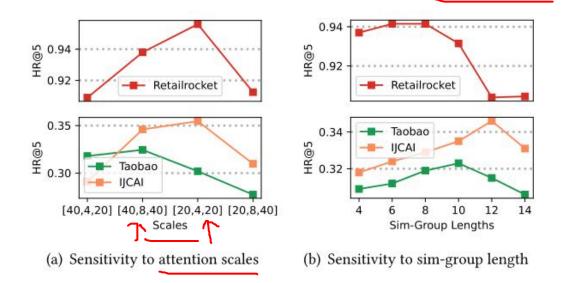


Figure 7: Hyperparameter study of MBHT framework.

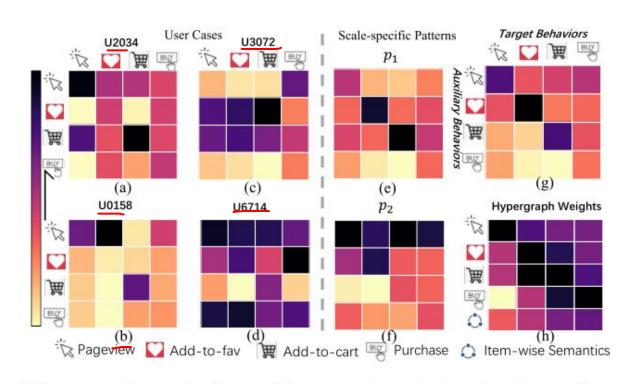


Figure 6: Case studies with cross-type behavior dependencies.

Thanks